CONDITIONS OF APPROVAL, JF ANY:

FORM 4 Rev 12/03

State of Colorado

Oil and Gas Conservation Commission 1120 Lincoln Street, Suite 801, Deriver, Colorado 80203 Phone: (303)694-2100 Fax:(303)894-2109

Ch.	- 61	V.E	Tes.
1	- 1	- 1	- 1
1	- 1	- 1	- 1

SUNDRY NOTICE

Submit onginal plus one copy. This form is to be used for general, technical and environmental sundry Information. For proposed or complated operations, describe in full on Technical Information Page (Page 2 of this form.) Identify well or other facility by API Number or by OGCC Facility ID. Operator shall send an Informational copy of all sundry notices for wells located in High Density Areas to the Local Government Designee (Rule 603b.)

RECEIVED 4/30/2012

OGCC Operator Number: 66571 Name of Operator: OXY USA WTP LP	4. Conta Daniel I. I	adilla	Complete the Attachment Checklist		
3. Address: 760 Horizon Drive, Suite 101 City: Grand Junction State: CO	Zip:81506	Phone: Fax:	970.263.3637 970.263.3694		OP OGCC
5. API Number 05- 045 - 10675	OGC	C Facility ID Number	335815 (Facility ID)	Survey Plat	
6. Well/Facility Name: 697-08-53 Reserve Pit	7. Well/	Facility Number	697-08-53	Directional Survey	
	NWSE, Sec 8, T	6S, R97W, 6th P	M	Surface Egpmt Diagram	
9. County: Garfield	10. F	ield Name: Gran	d Valley	Technical Info Page	X
11. Federal, Indian or Stale Lease Number:				Other Lab data, Map	X
		General Notic	8		

·	Las della, Map
	General Notice
CHANGE OF LOCATION: Attach New Survey Plat	(a change of surface qtr/qtr is substantive and requires a new permit) FMLFSL FELFWL
Change of Surface Footage from Exterior Section Lines:	
Change of Surface Footage to Exterior Section Lines:	
Change of Bottomhole Footage from Exterior Section Lines:	
Change of Bottomhole Footage to Exterior Section Lines:	attach directional survey
Bottomhole location Ctr/Qtr, Sec, Twp, Rng, Mer Latitude Distance to pearest proper	the line Distance to property hide public of USBh or OO
Latitude Distance to nearest proper Longitude Distance to nearest lease	
Ground Elevation Distance to nearest well so	
GPS DATA:	
Date of Measurement PDOP Reading	Instrument Operator's Name
CHANGE SPACING UNIT	Remove from surface bond
Formation Formation Code Spacing order number	Unit Acreage Unit configuration Signed surface use agreement attached
CHANGE OF OPERATOR (prior to drilling):	CHANGE WELL NAME NUMBER
Effective Date:	From:
Plugging Bond: Blankel Individual	To:
	Effective Date:
ABANDONED LOCATION: Was location ever built? Yes No	NOTICE OF CONTINUED SHUT IN STATUS Date well shul in or temporarily abandoned.
Is sile ready for Inspection? Yes No	Has Production Equipment been removed from site? Yes No
Date Ready for Inspection:	MIT required If shut in longer than two years. Date of tast MIT
SPUD DATE:	REQUEST FOR CONFIDENTIAL STATUS (6 mos from date casing set)
SUBSEQUENT REPORT OF STAGE, SQUEEZE OR RE	
Method used Cementing tool setting/perf depth Cer	ment volume Cement top Cement bottom Date
RECLAMATION: Attach (echnical page describing final reclam	are Dula 1M4
RECLAMATION: Attach technical page describing final reclamation will commence on approximately	Final reclamation is completed and site is ready for inspection.
Technical Engir	neering/Environmental Notice
Notice of Intent	Report of Work Done
Approximate Start Date:	Date Work Completed:
	echnical information Page (Page 2 must be submitted.)
Intent to Recomplete (submit form 2) Reques Change Criting Plans Repair	It to Vent or Flare E&P Waste Disposal Well Beneficial Reuse of E&P Waste
	12 variance requested Status Update/Change of Remediation Plans
	Application of diff. standard for Spills and Refeases
I hereby certify that the statements made in this formulare, to the best of my	knowledge true correct and complete
Signed:	Date 4/3 d//2 Emeit daniel_padilla@oxy.com
Print Name Daniel I. Padilla	Title: Regulatory Advisor
- 1 B	
COGCC Approved: Way holy or	Title: FOR Date: 05/02/
CONDITIONS OF ADDROLLS IF AND	~ 1 · 1

Chris Canfield EPS NW Region

FORM	Page 2
4	
Rev 12/05	

5.

TECHNICAL INFORMATION PAGE

OILA GAS

FOR OGCC USE ONLY

_			
1.	OGCC Operator Number: 66571	API Number: 05-045-10675	
	Name of Operator: OXY USA WTP LP	OGCC Facility 1D #	335815
3.	Well/Facility Name: 697-08-53 Reserve Pit	Well/Facility Number:	697-08-53
4.	Location (QtrQtr, Sec, Twp, Rng, Meridian):	NWSE, Sec 8, T6S, R97W, 6th PI	M

This form is to be completed whenever a Sundry Notice is submitted requiring detailed report of work to be performed or completed. This form shall be transmitted within 30 days of work completed as a "subsequent" report and must accompany Form 4, page 1.

DESCRIBE PROPOSED OR COMPLETED OPERATIONS

OXY USA WTP LP (Oxy) has completed reclamation of the above-mentioned reserve pit. Oxy identified post reclamation levels for Arsenic (As) initially to be above table 910-1 allowable concentrations. Upon receiving these results Oxy requested that ESC Lab Sciences re-analyze the same sample for As. The new value for As, although above table 910-1 allowable concentration levels, was below undisturbed background levels. Oxy believes that that the difference in these values are indicative of the naturally occurring As variability in the area. Oxy requests consideration as an alternative to the default value for As in Table 910-1, based on our demonstration of naturally occurring concentrations of As in undisturbed samples taken from native material collected from the pit bottom before use, as per foot note 1 of COGCC Table 910-1. Please refer to attached table, analytical data, and sample location map.

The sampling method Oxy employed was to take a representative random grab sample for each background sample location, and post reclaim sample. The analytical concentrations table identifies the COGCC Table 910-1 concentration levels, Oxy's undisturbed background concentrations (06/10/2011), and Oxy's post reclaimation concentrations (post reclaim 04/18/2012). The post reclaim concentrations of As are below those found in background samples.

Post reclaim samples showed one sample to exceed the allowable concentration level for pH, however that level is found to be equal to levels found in undisturbed background samples. As a result of the elevated level of background pH, Oxy will not be capping this pit. The reclaimed pit was contoured to be level with the pad grade (active working surface for operations & maintenance activities) to minimize stormwater run-on and run-off, during the operational phase of the pad. Final pad reclamation will occur at the end of the life of the pad.

697-08-53 Reserve Pit 0	Closure
Pad #:	697-08-53
Sample Date:	4/19/2012
Clearance Achieved Date:	

Lab Report # Date Sampled Sample Name MCL (mg/Kg)	L570913			emple Identifications (in						. 500501	1.500504
Sample Name	C310913	L570913	L570913	L570913	L570913	L570913	L570913	L520524	L520524	L520524	L520524
	4/18/2012	4/18/2012	4/18/2012	4/18/2012	4/18/2012	4/18/2012	4/18/2012	6/10/2011	6/10/2011	6/10/2011	6/10/2011
MCL (mg/Kg)	697-08-53-PB-E	697-08-53-PB-E Duplicate	697-08-53-PB-W	697-08-53-PB-NE	697-08-53-PB-SW	697-08-53-PB-CENTER	697-08-53-PB-COMP	697-08-53-PB-BG-SS-6	697-08-53-PB-BG-SS-7	697-08-53-PB-BG-SS-8	697-08-53-PB-BG-53
											т .
				· ·							
500	23.0		18.0	14.54	13.0	18.0	62.2	4.6	1,2	1.6	5.3
0,17	BDL		BOL	BDL	BDL	80L	BDL	BDL	BOL	BDL	BDL
85	0.00	- ""	8DL	0.0042	BDL	0.0037	0.0100	BDL	BDL	BDL	BDL
			BOL	BDL	BDL	BDL	0.0051	BDL	BDL	BDL	BDL
			0.0038	0.0170	0.0052	0.031	0,120	BDL	BOL	BDL	BDL
		<u> </u>									
1000	0.0008		0.00088	BDL	BDL	BDL I	0.0042	BDL	BDL		BDL
				BDL	BDL	BDL	0.0021	BDL			BDL
				BOL	BDL	0.0015	BDL	0.0012			BOL
			0.0018	0.0021	0.0016	0.0024	0.0014	0.0016			0.0017
			BDL	BDL	BDL	BDL	BDL	BDL			BDL
	0,00064	1	0.00094	0.0007	0.00074	0.0013	0.0011	BDL			0.00066
22	0.0017		0.0019	0.0016	BDL	BDL	0.0025	BDL			BDL
			BDL	BDL	BDL	BDL	BDL				BDL
	0.0031		0.0061	0.0035	0.0034	0.0036					BDL
	0.022		0.012	0.001	0.011						BOL
			BDL	BDL	BDL	BDL	BDL				BDL
23	0.066		0.018	0.012	0.02	0.016	0.13				0.0008
1000	0.0029	·	0.0037	0.0032	0.0022	0.0034	0.0031	0.00076	BDL	0.0011	0.0029
	·										
mmhos/cm or 2X background	0.13	T .	0.12	0.17	0.23	0.220					0,140
<12	1.3		1.8	0.9	2.5	3.1					1.0
6-9	8.3	1	8.6	8.5	8.7	8.8	9.2	9.2	8.8	8.5	7.3
0.39	47.0	7.4	4.9	11.0	5.3	5.7					20.0
15,000	220		340	490							410
70	1.50		0.55	1.60							1.90 82.0
120,000	37.0		55.0								BDL
23	1.2		BDL								16.0
3100	24.0										14.0
400	26.0										0.015
23											37.0
1600	24.0		25.0	19.0	22.0	28.0			39.0 BDL	BDL	BDL BDL
390	BDL		BDL	BDL	BDL	BDL	BDL	0.66	BDL	BDL	BDL
	BDL	1	BDL	BDL	BOL	BOL	BDL	BDL			UDC
390 23,000	87.0		58.0	69.0	BDL	61.0	60.0	66.0	46.0	52.0	54.0
	100 175 1000 1000 1000 0.22 0.22 2.2 0.022 1000 1000	100 BDL 175 0.022 1000 0.0008 1000 0.0008 1000 0.0012 0.22 0.0011 0.22 0.0016 2.2 BDL 0.022 0.00064 22 0.0007 0.022 BDL 1000 0.0031 1000 0.0031 1000 0.0021 23 0.066 1000 0.0029 mmhos/cm or 2X background 0.13 <12 1.3 6-9 8.3 0.39 47.0 15,000 220 70 1.50 120,000 37.0 23 1.2 3100 24.0 400 28.0 23 0.006	100 BDL 175 0.022 1000 0.0008 1000 0.0008 1000 0.0012 0.22 0.0011 0.22 0.0016 2.2 BDL 0.022 0.0064 2.2 0.0077 0.022 BDL 1000 0.0031 1000 0.0031 1000 0.0031 23 0.066 1000 0.0029 mmhos/cm or 2X background 0.13 <12 1.3 6-9 8.3 0.39 47.0 7.4 15,000 220 70 1.50 120,000 37.0 23 1.2 3100 24.0 400 26.0 23 0.009	100	100	100	BDL	BDL	BOL BOL	BDL	190

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

Report Summary

Monday June 20, 2011

Report Number: L520524 Samples Received: 06/11/11 Client Project: 900546.0001.050

Description: 697-08-53-Pit Background

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Mark W. Beasley , ECC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 June 20, 2011

ESC Sample # : L520524-01

Date Received :

June 11, 2011 697-08-53-Pit Background Description

Site ID :

Sample ID SS-6 Project #: 900546.0001.050

Collected By 06/10/11 10:40 Collection Date :

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg		3060A/7	06/17/11	1
Chromium, Trivalent	58.	0.17	2.0	mg/kg		Calc.	06/15/11	1
ORP	44.			mV		2580	06/17/11	1
Н	9.2			su		9045D	06/17/11	1
Sodium Adsorption Ratio	2.5					Calc.	06/14/11	1
Specific Conductance	100			umhos/cm		9050AMo	06/17/11	1
Mercury	0.033	0.0015	0.020	mg/kg		7471	06/15/11	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	17. 360 2.6 58. 22. 21. 34. 0.66	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.32 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 1.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	В	6010B	06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/16/11 06/15/11 06/15/11 06/15/11	1 1 1 1 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130)	υ	0.25	0.50	mg/kg		8015D/G	06/13/11	5
a,a,a-Trifluorotoluene(FID)	94.1			% Rec.		602/801	06/13/11	5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	บ บ บ	0.0021 0.0017 0.0016 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg		8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	5 5 5 5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	105. 111. 106. 99.0			% Rec. % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	4.6	0.77	4.0	mg/kg		3546/DR	06/18/11	1
o-Terphenyl	83.1			% Rec.		3546/DR	06/18/11	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-01 (PH) - 9.2020.4c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 June 20, 2011

ESC Sample # : L520524-01

Date Received :

Description

June 11, 2011 697-08-53-Pit Background

Site ID :

SS-6

Project #: 900546.0001.050

Sample ID

Collected By

Collection Date : 06/10/11 10:40

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	Ü	0.00076	0.0060	mg/kg		8270C-S	06/16/11	1
Acenaphthene	Ü	0.00071	0.0060	mg/kg		8270C-S	06/16/11	1
Acenaphthylene	Ü	0.00057	0.0060	mg/kg		8270C-S	06/16/11	1
Benzo(a)anthracene	0.0012	0.00092	0.0060	mg/kg	J	8270C-S	06/16/11	1
Benzo(a)pyrene	U	0.00062	0.0060	mg/kg		8270C-S	06/16/11	1
Benzo(b)fluoranthene	0.0016	0.00082	0.0060	mg/kg	J	8270C-S	06/16/11	1
Benzo(g,h,i)perylene	0.0016	0.0012	0.0060	mg/kg	J	8270C-S	06/16/11	1
Benzo(k) fluoranthene	U	0.0013	0.0060	mg/kg		8270C-S	06/16/11	1
Chrysene	Ü	0.0011	0.0060	mg/kg		8270C-S	06/16/11	1
Dibenz(a,h)anthracene	Ü	0.0011	0.0060	mg/kg		8270C-S	06/16/11	1
Fluoranthene	U	0.0010	0.0060	mg/kg		8270C-S	06/16/11	1
Fluorene	Ü	0.00055	0.0060	mg/kg		8270C-S	06/16/11	1
Indeno(1,2,3-cd)pyrene	Ü	0.0012	0.0060	mg/kg		8270C-S	06/16/11	1
Naphthalene	U	0.00065	0.0060	mg/kg		8270C-S	06/16/11	1
Phenanthrene	0.0019	0.00074	0.0060	mg/kg	J	8270C-S	06/16/11	1
Pyrene	0.00076	0.00059	0.0060	mg/kg	J	8270C-S	06/16/11	1
1-Methylnaphthalene	Ü	0.00079	0.0060	mg/kg		8270C-S	06/16/11	1
2-Methylnaphthalene	Ü	0.00059	0.0060	mg/kg			06/16/11	
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	06/16/11	1
Surrogate Recovery								
Nitrobenzene-d5	45.9			% Rec.		8270C-S	06/16/11	1
2-Fluorobiphenyl	51.6			% Rec.			06/16/11	1
p-Terphenyl-d14	43.8			% Rec.		8270C-S	06/16/11	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-01 (PH) - 9.2020.4c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

June 20, 2011

ESC Sample # : L520524-02

Date Received :

June 11, 2011 697-08-53-Pit Background Description

Site ID :

Sample ID \$\$-7 Project # : 900546.0001.050

Collected By

06/10/11 11:00 Collection Date :

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg		3060A/7	06/17/11	1
Chromium, Trivalent	86.	0.17	2.0	mg/kg		Calc.	06/15/11	1
ORP	63.			mV		2580	06/17/11	1
Нд	8.8			su		9045D	06/17/11	1
Sodium Adsorption Ratio	0.80					Calc.	06/14/11	1
Specific Conductance	110			umhos/cm		9050AMo	06/17/11	1
Mercury	0.022	0.0015	0.020	mg/kg		7471	06/15/11	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	19. 410 2.0 86. 14. 18. 39. U	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.32 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 1.0 0.50	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	В	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11	1 1 1 1 1 1 1 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130) a,a,a-Trifluorotoluene(FID)	υ 94.3	0.25	0.50	mg/kg % Rec.			06/13/11 06/13/11	
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	U U U	0.0021 0.0017 0.0016 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg		8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	104. 108. 103. 99.4			<pre>% Rec. % Rec. % Rec. % Rec.</pre>		8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	1.2	0.77	4.0	mg/kg	J	3546/DR	06/17/11	1
o-Terphenyl	80.0			% Rec.		3546/DR	06/17/11	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

. Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-02 (PH) - 8.8020.4c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

June 20, 2011

ESC Sample # : L520524-02

June 11, 2011 697-08-53-Pit Background Date Received : Description

Site ID :

Sample ID SS-7

Project # : 900546.0001.050

Collected By СJВ

Collection Date : 06/10/11 11:00

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	υ	0.00076	0.0060	mg/kg		8270C-S	06/16/11	1
Acenaphthene	Ü	0.00071	0.0060	mg/kg			06/16/11	
Acenaphthylene	ΰ	0.00057	0.0060	mg/kg			06/16/11	
Benzo(a)anthracene	ΰ	0.00092	0.0060	mg/kg			06/16/11	
Benzo (a) pyrene	ΰ	0.00062	0.0060	mg/kg			06/16/11	
Benzo(b) fluoranthene	Ü	0.00082	0.0060	mg/kg			06/16/11	
Benzo(g,h,i)perylene	0.0017	0.0012	0.0060	mg/kg	J		06/16/11	
Benzo(k) fluoranthene	U	0.0013	0.0060	mg/kg	•		06/16/11	
Chrysene	Ü	0.0011	0.0060	mg/kg			06/16/11	
Dibenz(a,h)anthracene	ΰ	0.0011	0.0060	mg/kg			06/16/11	
Fluoranthene	Ū	0.0010	0.0060	mg/kg			06/16/11	
Fluorene	Ŭ	0.00055	0.0060	mg/kg			06/16/11	
Indeno(1,2,3-cd)pyrene	Ü	0.0012	0.0060	mg/kg		8270C-S	06/16/11	1
Naphthalene	Ü	0.00065	0.0060	mg/kg		8270C-S	06/16/11	1
Phenanthrene	Ü	0.00074	0.0060	mg/kg		8270C-S	06/16/11	1
Pyrene	Ū	0.00059	0.0060	mg/kg		8270C-S	06/16/11	1
1-Methylnaphthalene	Ü	0.00079	0.0060	mg/kg		8270C-S	06/16/11	1
2-Methylnaphthalene	Ü	0.00059	0.0060	mg/kg		8270C-S	06/16/11	1
2-Chloronaphthalene	U	0.00060	0.0060	mq/kq		8270C-S	06/16/11	1
Surrogate Recovery								
Nitrobenzene-d5	50.2			% Rec.		8270C-S	06/16/11	1
2-Fluorobiphenyl	55.8			% Rec.		8270C-S	06/16/11	1
p-Terphenyl-d14	63.0			% Rec.		8270C-S	06/16/11	1

 $\label{eq:U} \begin{array}{l} U = ND \mbox{ (Not Detected)} \\ MDL = \mbox{Minimum Detection Limit} = LOD \\ RDL = \mbox{Reported Detection Limit} = LOQ = PQL = EQL \end{array}$

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-02 (PH) - 8.8020.4c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 June 20, 2011

Date Received :

June 11, 2011 697-08-53-Pit Background

Site ID :

Description

SS-8

Project # : 900546.0001.050

ESC Sample # : L520524-03

Sample ID

Collected By ÇJB 06/10/11 11:07 Collection Date :

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg		3060A/7	06/17/11	1
Chromium, Trivalent	84.	0.17	2.0	mg/kg		Calc.	06/15/11	1
ORP	87.			mV		2580	06/17/11	1
рН	8.5			su		9045D	06/17/11	1
Sodium Adsorption Ratio	0.99					Calc.	06/14/11	1
Specific Conductance	140			umhos/cm		9050AMo	06/17/11	1
Mercury	0.019	0.0015	0.020	mg/kg	J	7471	06/16/11	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	14. 320 1.8 84. 16. 17. 38. U	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.32 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 1.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	В	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11	1 1 1 1 1 1 1 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130)	U	0.25	0.50	mg/kg		8015D/G	06/13/11	5
a,a,a-Trifluorotoluene(FID)	94.0			% Rec.		602/801	06/13/11	5
Benzene Toluene Ethylbenzene Total Xylenes	n n n	0.0021 0.0017 0.0016 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg		8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	5 5 5 5
Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	104. 111. 104. 92.8			% Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11	5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	1.6	0.77	4.0	mg/kg	J	3546/DR	06/18/11	1
o-Terphenyl	76.1			% Rec.		3546/DR	06/18/11	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

Note:

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-03 (PH) - 8.5@20.3c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

June 20, 2011

ESC Sample # : L520524-03

Date Received : Description

June 11, 2011 697-08-53-Pit Background

Site ID :

Sample ID SS-8 Project #: 900546.0001.050

Collected By CJB 06/10/11 11:07 Collection Date :

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	υ	0.00076	0.0060	mq/kg		8270C-S	06/17/11	1
Acenaphthene	ΰ	0.00071	0.0060	mg/kg		8270C-S	06/17/11	1
Acenaphthylene	υ	0.00057	0.0060	mg/kg		8270C-S	06/17/11	1
Benzo (a) anthracene	υ	0.00092	0.0060	mg/kg		8270C-S	06/17/11	1
Benzo(a)pyrene	0.00086	0.00062	0.0060	mg/kg	J	8270C-S	06/17/11	1
Benzo(b)fluoranthene	0.0016	0.00082	0.0060	mg/kg	J	8270C-S	06/17/11	1
Benzo(g,h,i)perylene	0.0042	0.0012	0.0060	mg/kg	J	8270C-S	06/17/11	1
Benzo(k)fluoranthene	U	0.0013	0.0060	mg/kg		8270C-S	06/17/11	1
Chrysene	υ	0.0011	0.0060	mg/kg		8270C-S	06/17/11	1
Dibenz(a,h)anthracene	U	0.0011	0.0060	mg/kg		8270C-S	06/17/11	1
Fluoranthene	0.0011	0.0010	0.0060	mg/kg	J	8270C-S	06/17/11	1
Fluorene	U	0.00055	0.0060	mg/kg		8270C-S	06/17/11	1
Indeno(1,2,3-cd)pyrene	Ū	0.0012	0.0060	mg/kg		8270C-S	06/17/11	1
Naphthalene	U	0.00065	0.0060	mg/kg		8270C-S	06/17/11	1
Phenanthrene	0.00079	0.00074	0.0060	mg/kg	J	8270C-S	06/17/11	1
Pyrene	0.0011	0.00059	0.0060	mg/kg	J	8270C-S	06/17/11	1
1-Methylnaphthalene	U	0.00079	0.0060	mg/kg		8270C-S	06/17/11	1
2-Methylnaphthalene	U	0.00059	0.0060	mg/kg		8270C-S	06/17/11	1
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	06/17/11	1
Surrogate Recovery								
Nitrobenzene-d5	98.9			% Rec.		8270C-S	06/17/11	1
2-Fluorobiphenyl	98.7			% Rec.		8270C-S	06/17/11	1
p-Terphenyl-d14	93.2			% Rec.		8270C-S	06/17/11	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-03 (PH) - 8.5020.3c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

June 20, 2011

ESC Sample # : L520524-04

Date Received

June 11, 2011 697-08-53-Pit Background Description ss-9

06/10/11 11:13

Site ID :

Project #: 900546.0001.050

Collected By CJB

Sample ID

Collection Date :

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg		3060A/7	06/17/11	1
Chromium, Trivalent	82.	0.17	2.0	mg/kg		Calc.	06/15/11	1
ORP	85.			mV		2580	06/17/11	1
рН	7.3			su		9045D	06/17/11	1
Sodium Adsorption Ratio	0.95					Calc.	06/14/11	1
Specific Conductance	140			umhos/cm		9050AMo	06/17/11	1
Mercury	0.015	0.0015	0.020	mg/kg	J	7471	06/16/11	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	20. 410 1.9 82. 16. 14. 37. U U 54.	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.32 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 1.0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	V B	6010B 6010B 6010B	06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11 06/15/11	1 1 1 1 1 1 1 1 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130) a,a,a-Trifluorotoluene (FID)	U 94.4	0.25	0.50	mg/kg % Rec.			06/13/11 06/13/11	5 5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	U U U U 105. 106. 104. 97.0	0.0021 0.0017 0.0016 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg s Rec. Rec. Rec.		8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11 06/13/11	5 5 5 5 5 5 5 5 5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%) o-Terphenyl	5.3 7 9.3	0.77	4.0	mg/kg % Rec.		3546/DR	06/18/11	

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-04 (PH) - 7.3020.6c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Blair Rollins OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

June 20, 2011

ESC Sample # : L520524-04

Date Received

Site ID :

June 11, 2011 697-08-53-Pit Background Description

Project #: 900546.0001.050

Sample ID SS-9

Collected By CJB Collection Date : 06/10/11 11:13

Parameter	Result	MDĻ	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	U	0.00076	0.0060	mg/kg		8270C-S	06/17/11	1
Acenaphthene	U	0.00071	0.0060	mg/kg		8270C-S	06/17/11	1
Acenaphthylene	U	0.00057	0.0060	mg/kg		8270C-S	06/17/11	1
Benzo(a) anthracene	Ū	0.00092	0.0060	mg/kg		8270C-S	06/17/11	1
Benzo(a)pyrene	0.00066	0.00062	0.0060	mg/kg	J	8270C-S	06/17/11	1
Benzo(b)fluoranthene	0.0017	0.00082	0.0060	mg/kg	J	8270C-S	06/17/11	1
Benzo(g,h,i)perylene	0.0014	0.0012	0.0060	mg/kg	J	8270C-S	06/17/11	1
Benzo(k)fluoranthene	Ü	0.0013	0.0060	mg/kg		8270C-S	06/17/11	1
Chrysene	Ü	0.0011	0.0060	mg/kg		8270C-S	06/17/11	1
Dibenz(a,h)anthracene	Ü	0.0011	0.0060	mg/kg		8270C-S	06/17/11	1
Fluoranthene	U	0.0010	0.0060	mg/kg		8270C-S	06/17/11	1
Fluorene	U	0.00055	0.0060	mg/kg		8270C-S	06/17/11	1
Indeno(1,2,3-cd)pyrene	U	0.0012	0.0060	mg/kg		8270C-S	06/17/11	1
Naphthalene	0.00080	0.00065	0.0060	mg/kg	J	8270C-S	06/17/11	1
Phenanthren e	0.0010	0.00074	0.0060	mg/kg	J	8270C-S	06/17/11	1
Pyrene	0.0029	0.00059	0.0060	mg/kg	J	8270C-S	06/17/11	1
1-Methylnaphthalene	0.0010	0.00079	0.0060	mg/kg	J	8270C-S	06/17/11	1
2-Methylnaphthalene	0.0024	0.00059	0.0060	mg/kg	J	8270C-S	06/17/11	1
2-Chloronaphthalene	Ü	0.00060	0.0060	mg/kg		8270C-S	06/17/11	1
Surrogate Recovery								
Nitrobenzene-d5	100.			% Rec.		8270C-S	06/17/11	1
2-Fluorobiphenyl	101.			% Rec.		8270C-S	06/17/11	1
p-Terphenyl-d14	107.			% Rec.		8270C-S	06/17/11	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/20/11 16:37 Printed: 06/20/11 16:38 L520524-04 (PH) - 7.3@20.6c

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L520524-01	WG540600	SAMP	Lead	R1727230	В
	WG540130	SAMP	Selenium	R1724389	J
	WG540795	SAMP	Benzo(a)anthracene	R1728470	J
	WG540795	SAMP	Benzo(b)fluoranthene	R17284 7 0	J
	WG540795	SAMP	Benzo(g,h,i)perylene	R1728470	J
	WG540795	SAMP	Phenanthrene	R1728470	J
	WG540795	SAMP	Pyrene	R1728470	J
L520524-02	WG540600	SAMP	Lead	R1727230	В
	WG540644	SAMP	TPH (GC/FID) High Fraction	R1728369	J
	WG540527	SAMP	Benzo(g,h,i)perylene	R1727331	J
L520524-03	WG540600	SAMP	Lead	R1727230	В
	WG540644	SAMP	TPH (GC/FID) High Fraction	R1728369	J
	WG540079	SAMP	Mercury	R1726809	J
	WG540652	SAMP	Benzo(a) pyrene	R1727749	J
	WG540652	SAMP	Benzo(b) fluoranthene	R1727749	J
	WG540652	SAMP	Benzo(g,h,i)perylene	R1727749	J
	WG540652	SAMP	Fluoranthene	R1727749	J
	WG540652	SAMP	Phenanthrene	R1727749	J
	WG540652	SAMP	Pyrene	R1727749	J
L520524-04	WG540130	SAMP	Barium	R1724389	V
	WG540600	SAMP	Lead	R1727230	В
	WG540079	SAMP	Mercury	R1726809	J
	WG540652	SAMP	Benzo(a) pyrene	R1727749	J
	WG540652	SAMP	Benzo(b) fluoranthene	R1727749	J
	WG540652	SAMP	Benzo(g,h,i)perylene	R1727749	J
	WG540652	SAMP	Naphthalene	R1727749	J
	WG540652	SAMP	Phenanthrene	R1727749	J
	WG540652	SAMP	Pyrene	R1727749	J
	WG540652	SAMP	1-Methylnaphthalene	R1727749	J
	WG540652	SAMP	2-Methylnaphthalene	R1727749	Ĵ
					-

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
В	(EPA) - The indicated compound was found in the associated method blank as well as the laboratory sample.
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
V	(ESC) - Additional QC Info: The sample concentration is too high to evaluate accurate spike recoveries.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by

 Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Summary of Remarks For Samples Printed 06/20/11 at 16:38:24

TSR Signing Reports: 134 R5 - Desired TAT

Sample: L520524-01 Account: OXYGJCO Received: 06/11/11 09:00 Due Date: 06/17/11 00:00 RPT Date: 06/20/11 16:37 Sample: L520524-02 Account: OXYGJCO Received: 06/11/11 09:00 Due Date: 06/17/11 00:00 RPT Date: 06/20/11 16:37 Sample: L520524-03 Account: OXYGJCO Received: 06/11/11 09:00 Due Date: 06/17/11 00:00 RPT Date: 06/20/11 16:37 Sample: L520524-04 Account: OXYGJCO Received: 06/11/11 09:00 Due Date: 06/17/11 00:00 RPT Date: 06/20/11 16:37

OXY USA Inc	Grand	A	lternate billin	g information:	:		42,654	Ana	lysis/	Conta	ainer/F	reser	ative		Chain of Custody Page of
Junction, CO			CO Table	910					16 16					Prepared by:	· - -
760 Horizon Dr.,	Ste 10	01												Envir	ONMENTAL
Grand Junction,	CO 81	506	port to:								jee ji		11	SCIEN	CE CORP.
,		- 1		- Rolliv	√ S _a@oxy.co	om	The state of the s						82	12065 Le Mt. Juliet,	banon Road TN 37122
Project Description: 697-08-53	-P:+ 80m	£300,300	City/Sate Collected	Parac											15) 758-5858
Phone: (970) 263-3601 FAX:	Client Project #	#: *	ESC Key			(1)						E	Š		00) 767-5859 US) 758-5859
Collected by: CTB	Site/Facility ID:		P.O.#:					SIM	-	2	17	n.			_
Collected by (signature):	Rush? (La		•	Date Resu	lts Needed:	Ţ	GRO	PAH	표	i,	184	125	12	CoCode OXYGJ	CO (lab use only)
Clubs kh	Ne	me Day ext Day vo Day	100%	Email?		No.	V8260BTEX,	SV8270PAHSIM	SPCON, pH	18 + Cu,	CR6SS			Template/Prelogin	
Packed on Ice N			1	FAX?	NoYes	Cntrs	260B			MRCRA8	1	8	18	Shipped Via:	
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	w	88	DRO,	SAR,	MR	CR3,			Remarks/Contaminant	Sample # (lab only)
55-6	Grab	55		6/10111	1040	3	×	×	×	×	×				10-
55-7	Grab	55		6/10/11	1100	3	×	×	×	<u> </u>	×		0		-07
55-8	Grab	65	ļ <u>-</u> _	6116111	1107	82	JUTE	ㅅ	×	×	×				-03
55-9	Grab	<u>ss</u>	_	6/10/11	1113	3	×	×	×	×	×	4	flac		-04
						-							- 1		
	1								549 5		7.55	3			
	man -	6 (100) 11		ļ		ļ					NEC T		- 1		
			<u> </u>						押品		7		V53 1		
*Matrix: SS - SoiVSolid GW - Groun	ndwater WW ~												pH _	Ter	np
Remarks:		£	36957	2051 3	1989								Flow_	Oil	er
Relinquished by: (Signature)	Date:	Time: 4:36	Receiv	ed by: (Signa	lure)				Sam	ples redEx	elurned Cou	d via: 🗆 rier 🚨	lups	Condition:	(lab use only)
Relinquished by: (Signature)	Date:	Time:		ed by: (Signal	3000		,		7	۳,			S Received	:	/
Relinquished by: (Signature)	Date:	Time:		ed for lab by					Date	11/	y	Time:		pH Checked:	NCF:

NON-CONFORMANCE FORM

Login No.: 6520524-0C	
Date: 6/(1//1	<u> </u>
Evaluated by: Mate	
Client: UXY65Cu	
Non-Conformance (check appli	cable items)
☐ Parameter(s) past holding time	□ Login Clarification Needed
☐ Improper temperature	☐ Chain of custody is incomplete
☐ Improper container type	☐ Chain of Custody is missing (see below)
☐ Improper preservation	☐ Broken container(s) (See below)
☐ Container lid not intact	Broken container: sufficient sample
	volume remains for analysis requested (See below)
If no COC: Received by Time: Time: Temp: Cont. Rec pH: Fedex \(\text{UPS} \) \(\text{SWA} \(\text{O} \) \(\text{Other} \) \(\text{Tracking } \(\text{#} \)	Insufficient packing material inside coolerImproper handling by carrier (FedEx / UPS / Courier
Comments: Rec'eved	55-8 Baken
Login Instructions:	TSR Initials:
Client informed by call / email / fax /	/ voice mail date: time:

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Daniel Padilla
OXY USA Inc - Grand Junction, CO
760 Horizon Dr., Ste. 101
Grand Junction, CO 81506

Report Summary

Tuesday April 24, 2012

Report Number: L570913
Samples Received: 04/19/12
Client Project: WA-000546-0013-10

Description: 697-08-S3

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Mark W. Beasley , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

April 24, 2012

ESC Sample # : L570913-01

Date Received : April 19, 2012 697-08-S3

Description

Site ID : 697-08-S3

Sample ID 697-08-53-PB-E 20 FT

Project # : WA-000546-0013-10

Collected By CJB

Collection Date : 04/18/12 10:01

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	1.2	0.71	2.0	mg/kg	J	3060A/7	04/24/12	1
Chromium, Trivalent	37.	0.17	2.0	mg/kg		Calc.	04/21/12	1
ORP	150		•	mV	Т8	2580	04/21/12	1
рн	8.3			su		9045D	04/21/12	1
Sodium Adsorption Ratio	1.3					Calc.	04/23/12	1
Specific Conductance	130			umhos/cm		9050AMo	04/21/12	1
Mercury	0.0092	0.00080	0.020	mg/kg	J	7471	04/21/12	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	47. 220 1.5 38. 24. 26. 24. U U 87.	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.63 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 2.0 0.50	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12	1 1 1 1 1 1 1 2 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130) a,a,a-Trifluorotoluene(FID)	4.0 97.0	0.25	0.50	mg/kg % Rec.			04/21/12 04/21/12	5 5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	0.0023 U 0.022	0.0017 0.0016 0.0019 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg	J	8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5 5 5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	98.6 90.9 104. 101.			<pre>% Rec. % Rec. % Rec. % Rec.</pre>		8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	19.	0.77	4.0	mg/kg		3546/DR	04/24/12	1
o-Terphenyl	108.			% Rec.		3546/DR	04/24/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

 $\mathtt{RDL} = \mathtt{Reported}$ Detection $\mathtt{Limit} = \mathtt{LOQ} = \mathtt{PQL} = \mathtt{EQL}$

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01

L570913-01 (PH) - 8.3@23.9c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

April 24, 2012

ESC Sample # : L570913-01

19, 2012 Date Received : April

Description

697-08-53

Sample ID

697-08-53-PB-E 20 FT

Site ID : 697-08-S3

Project # : WA-000546-0013-10

Collected By : CJB Collection Date : 04/18/12 10:01

Parameter		Result]	MDL		RDL	Un	its	Qu	alifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons													
Anthracene		0.0012	0.	00076	(0.0060	ma	r/kg		J	8270C-S	04/22/12	1
Acenaphthene	0	.00080	0.	00071	- (0.0060		/kg		J	8270C-S	04/22/12	1
Acenaphthylene	0	.00057	0.	00057	- {	0.0060	mg	/kg		J	8270C-S	04/22/12	1
Benzo(a)anthracene	12	0.0011	0.	00092	- {	0.0060	mg	/kg		J	827QC-S	04/22/12	1
Benzo (a) pyrene	° 0	.00064	0.	00062	(0.0060	mg	r/kg		Ĵ	8270c-s	04/22/12	1
Benzo(b) fluoranthene		0.0016	0.	00082	(0.0060	mg	/kg		J	8270C-S	04/22/12	1
Benzo(g,h,i)perylene		0.0031	0	.0012	(0.0060	mg	r/kg		J	8270C-S	04/22/12	1
Benzo(k) fluoranthene		U	0	.0013	(0.0060	πġ	/kg			8270C-S	04/22/12	1
Chrysene		0.0017		.0011		0.0060		/kg		J	8270C-S	04/22/12	1
Dibenz(a,h)anthracene		Ü	0	.0011	(0.0060	mg	ı/kg			8270C-S	04/22/12	1
Fluoranthene		0.0031	0	.0010	(0.0060	mg	r/kg		J	8270C-S	04/22/12	1
Fluorene		0.022	0.	00055	(0.0060	mg	/kg			8270C-S	04/22/12	1
Indeno(1,2,3-cd)pyrene		U		.0012		0.0060	πġ	/kg			8270C-S	04/22/12	1
Naphthalene		0.066	0.	00065	(0.0060	mg	j/kg			8270C-S	04/22/12	1
Phenanthrene		0.032		00074		0.0060	mg	/kg			8270C-S	04/22/12	1
Pyrene		0.0029	0.	00059	(0.0060	mg	/kg		J	8270C-S	04/22/12	1
l-Methylnaphthalene		0.048	0.	00079	(0.0060	mg	/kg			8270C-S	04/22/12	1
2-Methylnaphthalene		0.13	0.	00059	(0.0060	mg	/kg			8270C-S	04/22/12	1
2-Chloronaphthalene		Ü	0.	00060	(0.0060	mg	/kg			8270C-S	04/22/12	1
Surrogate Recovery							_	_					
Nitrobenzene-d5		93.8					ક્ર	Rec.			8270C~S	04/22/12	. 1
2-Fluorobiphenyl		89.6					ક	Rec.			8270C-S	04/22/12	1
p-Terphenyl-d14		109.					ર્જ	Rec.			8270C-S	04/22/12	1

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD

 $\mathtt{RDL} = \mathtt{Reported}$ Detection $\mathtt{Limit} = \mathtt{LOQ} = \mathtt{PQL} = \mathtt{EQL}$

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-01 (PH) - 8.3023.9c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-02

19, 2012 Date Received April

Description

697-08-S3

Sample ID

697-08-53-PB-W 15-18 FT

Site ID : 697-08-S3

Project # : WA-000546-0013-10

Collected By

Collection Date : 04/18/12 10:24

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	Ū	0.71	2.0	mg/kg		3060A/7	04/24/12	1
Chromium, Trivalent	55.	0.17	2.0	mg/kg		Calc.	04/21/12	1
ORP	140			mV	T8	2580	04/21/12	1
На	8.6			su		9045D	04/21/12	1
Sodium Adsorption Ratio	1.8					Calc.	04/23/12	1
Specific Conductance	120			umhos/cm		9050AMo	04/21/12	1
Mercury	0.0095	0.00080	0.020	mg/kg	JP1	7471	04/21/12	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc TPH (GC/FID) Low Fraction	4.9 340 0.55 55. 18. 17. 25. U 58.	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.63 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 2.0 0.50 1.5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	v	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 8015D/G	04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12	1 1 1 1 1 1 2 1 1
Surrogate Recovery (70-130) a,a,a-Trifluorotoluene(FID)	98.4			% Rec.		602/801	04/20/12	5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	U U U 0.0038	0.0017 0.0016 0.0019 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg	J	8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5 5 5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	97.7 94.7 103. 100.		ē.	% Rec. % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	18.	0.77	4.0	mg/kg		3546/DR	04/24/12	1
o-Terphenyl	84.0			% Rec.		3546/DR	04/24/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

 ${\tt RDL = Reported \ Detection \ Limit = LOQ = PQL = EQL}$

Note:

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01

L570913-02 (PH) - 8.6@24.3c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-02

Date Received : Description

April

Site ID : 697-08-S3

19, 2012 697-08-53

Sample ID

697-08-53-PB-W 15-18 FT

Project #: WA-000546-0013-10

Collected By CJB Collection Date :

04/18/12 10:24

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	0.0010	0.00076	0.0060	mg/kg	J	8270C-S	04/22/12	1
Acenaphthene	0.00088	0.00071	0.0060	mg/kg	J	8270C-S	04/22/12	1
Acenaphthylene	U	0.00057	0.0060	mg/kg		8270C-S	04/22/12	1
Benzo(a)anthracene	U,	0.00092	0.0060	mg/kg		8270C-S	04/22/12	1
Benzo(a)pyrene	0.00094	0.00062	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(b) fluoranthene	0.0018	0.00082	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(g,h,i)perylene	0.0042	0.0012	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(k)fluoranthene	U	0.0013	0.0060	mg/kg		8270C-S	04/22/12	1
Chrysene	0.0019	0.0011	0.0060	mg/kg	J	8270C-S	04/22/12	1
Dibenz(a,h)anthracene	Ū	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Fluoranthene	0.0061	0.0010	0.0060	mg/kg		8270C-S	04/22/12	1
Fluorene	0.012	0.00055	0.0060	mg/kg		8270C-S	04/22/12	1
Indeno(1,2,3-cd)pyrene	U	0.0012	0.0060	mg/kg		8270C-S	04/22/12	1
Naphthalene	0.018	0.00065	0.0060	mg/kg			04/22/12	
Phenanthrene	0.017	0.00074	0.0060	mg/kg		8270C-S	04/22/12	1
Pyrene	0.0037	0.00059	0.0060	mg/kg	J		04/22/12	
1-Methylnaphthalene	0.018	0.00079	0.0060	mg/kg		8270C-S	04/22/12	1
2-Methylnaphthalene	0.050	0.00059	0.0060	mg/kg			04/22/12	
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	04/22/12	1
Surrogate Recovery								
Nitrobenzene-d5	74.3			% Rec.			04/22/12	
2-Fluorobiphenyl	89.8			% Rec.		8270C-S	04/22/12	1
p-Terphenyl-d14	114.			% Rec.		8270C-S	04/22/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-02 (PH) - 8.6024.3c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

April 24, 2012

ESC Sample # : L570913-03

April 697-08-S3 Date Received : 19, 2012 Description :

Site ID : 697-08-S3

Sample ID

697-08-53-PB-NE 20 FT

Project # : WA-000546-0013-10

Collected By : CJB Collection Date : 04/18/12 09:32

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	Ū	0.71	2.0	mg/kg		3060A/7	04/24/12	1
Chromium, Trivalent	34.	0.17	2.0	mg/kg		Calc.	04/21/12	1
ORP	150			mV	, T8	2580	04/21/12	1
Нд	8.5			su		9045D	04/21/12	1
Sodium Adsorption Ratio	0.89					Calc.	04/23/12	1
Specific Conductance	170			umhos/cm	ı	9050AMo	04/21/12	1
Mercury	0.012	0.00080	0.020	mg/kg	J	7471	04/21/12	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	11. 490 1.6 34. 20. 21. 19. U	0.65 0.050 0.080 0.085 0.21 0.18 0.26 0.63 0.16 0.34	2.0 0.25 0.50 0.50 1.0 0.50 1.0 2.0 0.50	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12	2 1 2 1 1 2 1 2 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130)	0.54	0.25	0.50	mg/kg		8015D/G	04/20/12	5
a,a,a-Trifluorotoluene(FID)	98.4			% Rec.		602/801	04/20/12	5
Benzene Toluene Ethylbenzene Total Xylenes	0.0042 U 0.017	0.0017 0.0016 0.0019 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg	J	8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5 5 5
Surrogate Recovery Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	99.3 92.9 104. 103.			% Rec. % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	14.	0.77	4.0	mg/kg		3546/DR	04/23/12	1
o-Terphenyl	78.3			% Rec.		3546/DR	04/23/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted.

This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-03 (PH) - 8.5024.5c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-03

Date Received : Description

April 19, 2012 697-08-53

Site ID : 697-08-S3

Sample ID

697-08-53-PB-NE 20 FT

Project # : WA-000546-0013-10

CJB

Collected By : Collection Date : 04/18/12 09:32

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	Ū	0.00076	0.0060	mg/kg		8270C-S	04/22/12	1
Acenaphthene	U	0.00071	0.0060	mg/kg		8270C-S	04/22/12	1
Acenaphthylene	U	0.00057	0.0060	mg/kg		8270C-S	04/22/12	1
, Benzo(a)anthracene	U	0.00092	0.0060	mg/kg		8270C-S	04/22/12	1 ,
Benzo(a)pyrene	0.00070	0.00062	0.0060	mg/kg	J	8270C-S	04/22/12	1 '
Benzo(b) fluoranthene	0.0021	0.00082	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(g,h,i)perylene	0.0040	0.0012	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(k)fluoranthene	Ū	0.0013	0.0060	mg/kg		8270C-S	04/22/12	1
Chrysene	0.0016	0.0011	0.0060	mg/kg	J		04/22/12	
Dibenz(a,h)anthracene	Ū	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Fluoranthene	0.0035	0.0010	0.0060	mg/kg	Ĵ	8270C-S	04/22/12	1
Fluorene	0.0011	0.00055	0.0060	mg/kg	J		04/22/12	
Indeno(1,2,3-cd)pyrene	Ū	0.0012	0.0060	mg/kg			04/22/12	
Naphthalene	0.012	0.00065	0.0060	mg/kg			04/22/12	
Phenanthrene	0.0075	0.00074	0.0060	mg/kg		8270C-S	04/22/12	1
Pyrene	0.0032	0.00059	0.0060	mg/kg	J		04/22/12	
l-Methylnaphthalene	0.0070	0.00079	0.0060	mg/kg			04/22/12	
2-Methylnaphthalene	0.020	0.00059	0.0060	mg/kg			04/22/12	
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	04/22/12	1
Surrogate Recovery								
Nitrobenzene-d5	74.0			% Rec.			04/22/12	
2-Fluorobiphenyl	94.0			% Rec.			04/22/12	1
p-Terphenyl-d14	123.			% Rec.		8270C-S	04/22/12	1

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-03 (PH) - 8.5@24.5c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-04

Site ID : 697-08-S3

Date Received : April 19, 2012 697-08-S3

Description

Sample ID Collected By 697-08-53-PB-SW 15-20 FT

CJB

Collection Date :

04/18/12 10:16

Project # : WA-000546-0013-10

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg	66	3060A/7	04/24/12	1
Chromium, Trivalent	53.	0.17	2.0	mg/kg		Calc.	04/21/12	1
ORP	140			mV	Т8	2580	04/21/12	1
рН	8.7			su		9045D	04/21/12	1
Sodium Adsorption Ratio	2.5					Calc.	04/23/12	1
Specific Conductance	230			umhos/cm		9050AMo	04/21/12	1
Mercury	0.010	0.00080	0.020	mg/kg	J	7471	04/21/12	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	5.3 220 0.71 53. 19. 17. 22. U	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.63 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 2.0 0.50	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12	1 1 1 1 1 2 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130)	U	0.25	0.50	mg/kg		8015D/G	04/20/12	5
a,a,a-Trifluorotoluene(FID)	98.3			% Rec.		602/801	04/20/12	5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	U U U 0.0052	0.0017 0.0016 0.0019 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg	J	8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	97.8 93.7 105. 101.			% Rec. % Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	04/21/12 04/21/12 04/21/12 04/21/12	5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	13.	0.77	4.0	mg/kg		3546/DR	04/24/12	1
o-Terphenyl	84.7			% Rec.		3546/DR	04/24/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-04 (PH) - 8.7@24.3c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-04

Date Received : Description

April 19, 2012 697-08-53

697-08-53-PB-SW 15-20 FT

Site ID : 697-08-S3

Sample ID

Project # : WA-000546-0013-10

Collected By : Collection Date :

CJB

04/18/12 10:16

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons	i							
Anthracene	U	0.00076	0.0060	mg/kg		8270C-S	04/22/12	1
Acenaphthene	U	0.00071	0.0060	mg/kg		8270C-S	04/22/12	1
Acenaphthylene	Ŭ	0.00057	0.0060	mg/kg		8270C-S	04/22/12	1
Benzo(a) anthracene	Ū	0.00092	0.0060	mg/kg		8270C-S	04/22/12	1
Benzo (a) pyrene	0.00074	0.00062	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(b) fluoranthene	0.0016	0.00082	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(g,h,i)perylene	0.0029	0.0012	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(k)fluoranthene	Ŭ	0.0013	0.0060	mg/kg		8270C-S	04/22/12	1
Chrysene	Ü	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Dibenz(a,h)anthracene	U	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Fluoranthene	0.0034	0.0010	0.0060	mg/kg	J	8270C-S	04/22/12	1
Fluorene	0.011	0.00055	0.0060	mg/kg		8270C-S	04/22/12	1
Indeno(1,2,3-cd)pyrene	Ū	0.0012	0.0060	mg/kg		8270C-S	04/22/12	1
Naphthalene	0.020	0.00065	0.0060	mg/kg		8270C-S	04/22/12	1
Phenanthrene	0.013	0.00074	0.0060	mg/kg		8270C~S	04/22/12	1
Pyrene	0.0022	0.00059	0.0060	mg/kg	J	8270C-S	04/22/12	1
1-Methylnaphthalene	0.019	0.00079	0.0060	mg/kg		8270C-S	04/22/12	1
2-Methylnaphthalene	0.052	0.00059	0.0060	mg/kg		8270C-S	04/22/12	1
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	04/22/12	1
Surrogate Recovery								
Nitrobenzene-d5	71.0			% Rec.		8270C-S	04/22/12	1
2-Fluorobiphenyl	80.2			% Rec.		8270C-S	04/22/12	1
p-Terphenyl-d14	105.			% Rec.		8270C-S	04/22/12	1

U = ND (Not Detected)
MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-04 (PH) - 8.7024.3c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-05

Date Received : April 19, 2012 697-08-53

Description

697-08-53-PB-CENTER 15-19 FT Sample ID

Site ID : 697-08-S3

Project #: WA-000546-0013-10

Collected By : Collection Date : CJB

04/18/12 10:41

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg		3060A/7	04/24/12	1
Chromium, Trivalent	53.	0.17	2.0	mg/kg		Calc.	04/21/12	1
ORP	140			mV	T 8	2580	04/21/12	1
рн	8.8			su		9045D	04/21/12	1
Sodium Adsorption Ratio	3.1					Calc.	04/23/12	1
Specific Conductance	220			umhos/cm		9050AMo	04/21/12	1
Mercury	0.012	0.00080	0.020	mg/kg	J	7471	04/21/12	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc	5.7 200 0.59 53. 20. 18. 28. U	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.63 0.16	1.0 0.25 0.25 0.50 1.0 0.25 1.0 2.0 0.50	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12	1 1 1 1 1 1 2 1
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130)	U	0.25	0.50	mg/kg		8015D/G	04/20/12	5
a,a,a-Trifluorotoluene (FID)	98.1			% Rec.		602/801	04/20/12	5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	0.0037 U 0.031	0.0017 0.0016 0.0019 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg	J	8260B 8260B 8260B 8260B	04/20/12 04/20/12 04/20/12 04/20/12	5 5 5 5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	101. 107. 101. 93.2			% Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	04/20/12 04/20/12 04/20/12 04/20/12	5 5 5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	18.	0.77	4.0	mg/kg		3546/DR	04/24/12	1
o-Terphenyl	82.0			% Rec.		3546/DR	04/24/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01

L570913-05 (PH) - 8.8024.1c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506

April 24, 2012

ESC Sample # : L570913-05

Date Received : April

Sample ID

Description 697-08-S3

Site ID : 697-08-S3

Project #: WA-000546-0013-10

CJB

Collected By : Collection Date : 04/18/12 10:41

19, 2012

697-08-53-PB-CENTER 15-19 FT

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	Ū	0.00076	0.0060	mg/kg		8270C-S	04/22/12	1
Acenaphthene	U	0.00071	0.0060	mg/kg		8270C-S	04/22/12	1
Acenaphthylene	Ū	0.00057	0.0060	mg/kg		8270C-S	04/22/12	1
Benzo(a) anthraçene	0.0015	0.00092	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(a) pyrene *	0.0013	0.00062	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(b) fluoranthene	0.0024	0.00082	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(g,h,i)perylene	0.0057	0.0012	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(k) fluoranthene	Ū	0.0013	0.0060	mg/kg		8270C-S	04/22/12	1
Chrysene	U	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Dibenz(a,h)anthracene	Ū	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Fluoranthene	0.0036	0.0010	0.0060	mg/kg	J	8270C-S	04/22/12	1
Fluorene	0.0071	0.00055	0.0060	mg/kg		8270C-S	04/22/12	1
Indeno(1,2,3-cd)pyrene	Ū	0.0012	0.0060	mg/kg		8270C-S	04/22/12	1
Naphthalene	0.016	0.00065	0.0060	mg/kg		8270C-S	04/22/12	1
Phenanthrene	0.0080	0.00074	0.0060	mg/kg		8270C-S	04/22/12	1
Pyrene	0.0034	0.00059	0.0060	mg/kg	J	8270C-S	04/22/12	1
1-Methylnaphthalene	0.014	0.00079	0.0060	mg/kg		8270C-S	04/22/12	1
2-Methylnaphthalene	0.038	0.00059	0.0060	mg/kg		8270C-S	04/22/12	1
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	04/22/12	1
Surrogate Recovery				5 5				
Nitrobenzene-d5	62.6			% Rec.		8270C-S	04/22/12	1
2-Fluorobiphenyl	75.0			% Rec.		8270C-S	04/22/12	1
p-Terphenyl-d14	92.5			% Rec.		8270C-S	04/22/12	1

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-05 (PH) - 8.8024.lc

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-06

Date Received : April 697-08-S3

Description

Site ID : 697-08-S3

Sample ID 697-08-53-PB-COMP 6-12 IN

19, 2012

Project #: WA-000546-0013-10

Collected By CJB

Collection Date : 04/18/12 11:02

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	U	0.71	2.0	mg/kg		3060A/7	04/24/12	1
Chromium, Trivalent	46.	0.17	2.0	mg/kg		Calc.	04/21/12	1
ORP	140	+		πV	Т8	2580	04/21/12	1
рH	9.2			su		9045D	04/21/12	1
Sodium Adsorption Ratio	2.8					Calc.	04/23/12	1
Specific Conductance	460			umhos/cm		9050AMo	04/21/12	1
Mercury	0.016	0.00080	0.020	mg/kg	J	7471	04/21/12	1
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver	6.7 400 0.62 46. 19. 18. 22. U	0.32 0.050 0.040 0.085 0.21 0.090 0.26 0.63 0.16 0.34	1.0 0.25 0.25 0.50 1.0 0.25 1.0 2.0 0.50	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12 04/21/12	1 1 1 2
TPH (GC/FID) Low Fraction Surrogate Recovery (70-130)	3.2	0.25	0.50	mg/kg		8015D/G	04/20/12	5
a,a,a-Trifluorotoluene(FID)	98.5			% Rec.		602/801	04/20/12	5
Benzene Toluene Ethylbenzene Total Xylenes Surrogate Recovery	0.010 0.0051 0.12	0.0017 0.0016 0.0019 0.0023	0.0050 0.025 0.0050 0.015	mg/kg mg/kg mg/kg mg/kg	J	8260B 8260B 8260B 8260B	04/20/12 04/20/12 04/20/12 04/20/12	5 5 5 5
Toluene-d8 Dibromofluoromethane a,a,a-Trifluorotoluene 4-Bromofluorobenzene	102. 105. 101. 105.			% Rec. % Rec. % Rec.		8260B 8260B 8260B 8260B	04/20/12 04/20/12 04/20/12 04/20/12	5 5
TPH (GC/FID) High Fraction Surrogate recovery(%)	59.	3.8	20.	mg/kg		3546/DR	04/24/12	5
o-Terphenyl	141.			% Rec.		3546/DR	04/24/12	5

U = ND (Not Detected)

MDL = Minimum Detection Limit = LOD

RDL = Reported Detection Limit = LOQ = PQL = EQL

The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01

L570913-06 (PH) - 9.2024.1c

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

Daniel Padilla OXY USA Inc - Grand Junction, CO 760 Horizon Dr., Ste. 101 Grand Junction, CO 81506 April 24, 2012

ESC Sample # : L570913-06

Date Received : April Description

19, 2012

Site ID : 697-08-S3

: 697-08-S3

Sample ID

: 697-08-53-PB-COMP 6-12 IN

Project #: WA-000546-0013-10

Collected By : CJB Collection Date : 04/18/12 11:02

Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Polynuclear Aromatic Hydrocarbons								
Anthracene	0.0021	0.00076	0.0060	mg/kg	J	8270C-S	04/22/12	1
Acenaphthene	0.0042	0.00071	0.0060	mg/kg	J	8270C-S	04/22/12	1
Acenaphthylene	0.0016	0.00057	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(a)anthracene	U	0.00092	0.0060	mg/kg	1	8270C-S	04/22/12	1
Benzo(a)pyrene	0.0011	0.00062	0.0060	mg/kg	σ^{t}	8270C-S	04/22/12	1
Benzo(b)fluoranthene	0.0014	0.00082	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(g,h,i)perylene	0.0014	0.0012	0.0060	mg/kg	J	8270C-S	04/22/12	1
Benzo(k) fluoranthene	Ü	0.0013	0.0060	mg/kg		8270C-S	04/22/12	1
Chrysene	0.0025	0.0011	0.0060	mg/kg	J	8270C-S	04/22/12	1
Dibenz(a,h)anthracene	U	0.0011	0.0060	mg/kg		8270C-S	04/22/12	1
Fluoranthene	0.0018	0.0010	0.0060	mg/kg	J	8270C-S	04/22/12	1
Fluorene	0.063	0.00055	0.0060	mg/kg		8270C-S	04/22/12	1
Indeno(1,2,3-cd)pyrene	υ	0.0012	0.0060	mg/kg		8270C-S	04/22/12	1
Naphthalene	0.13	0.00065	0.0060	mg/kg		8270C-S	04/22/12	1
Phenanthrene	0.071	0.00074	0.0060	mg/kg		8270C-S	04/22/12	1
Pyrene	0.0031	0.00059	0.0060	mg/kg	J	8270C-S	04/22/12	1
1-Methylnaphthalene	0.14	0.00079	0.0060	mg/kg		8270C-S	04/22/12	1
2-Methylnaphthalene	0.37	0.012	0.12	mg/kg		8270C-S	04/24/12	20
2-Chloronaphthalene	U	0.00060	0.0060	mg/kg		8270C-S	04/22/12	1
Surrogate Recovery								
Nitrobenzene-d5	148.			% Rec.	J1	8270C-S	04/22/12	1
2-Fluorobiphenyl	86.5			% Rec.			04/22/12	1
p-Terphenyl-d14	101.			% Rec.		8270C-S	04/22/12	1

U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 04/24/12 17:00 Printed: 04/24/12 17:01 L570913-06 (PH) - 9.2024.1c

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L570913-01	WG588672	SAMP	Selenium	R2134814	0
	WG588793	SAMP	Chromium, Hexavalent	R2138193	J
	WG588659	SAMP	Mercury	R2136694	J
	WG588833	SAMP	Toluene	R2135193	J
	WG588886	SAMP	Anthracene	R2136493	ĩ
	WG588886 WG588886	SAMP SAMP	Acenaphthene	R2136493 R2136493	J J
	WG588886	SAMP	Acenaphthylene Benzo(a)anthracene	R2136493	J
	WG588886	SAMP	Benzo (a) pyrene	R2136493	J
	WG588886	SAMP	Benzo(b) fluoranthene	R2136493	Ĵ
	WG588886	SAMP	Benzo(g,h,i)perylene	R2136493	J
	WG588886	SAMP	Chrysene	R2136493	J
	WG588886	SAMP	Fluoranthene	R2136493	J
	WG588886	SAMP	Pyrene	R2136493	J
	WG588816	SAMP	ORP	R2135533	T8
L570913-02	WG588672 WG588672	SAMP SAMP	Barium Selenium	R2134814 R2134814	v o
	WG588659	SAMP	Mercury	R2134614	JP1
	WG588833	SAMP	Total Xylenes	R2135193	J
	WG588886	SAMP	Anthracene	R2136493	Ĵ
	WG588886	SAMP	Acenaphthene	R2136493	Ĵ
	WG588886	SAMP	Benzo(a) pyrene	R2136493	J
	WG588886	SAMP	Benzo(b) fluoranthene	R2136493	J
•	WG588886	SAMP	Benzo(g,h,i)perylene	R2136493	ī
,	WG588886	SAMP	Chrysene	R2136493	J
	WG588886	SAMP	Pyrene ORP	R2136493 R2135533	J T8
L570913-03	WG588816 WG588672	SAMP SAMP	Selenium	R2134814	0
5370713 03	WG588660	SAMP	Mercury	R2134614	J
	WG588833	SAMP	Toluene	R2135193	Ĵ
	WG588886	SAMP	Benzo(a) pyrene	R2136493	J
	WG588886	SAMP	Benzo(b) fluoranthene	R2136493	J
	WG588886	SAMP	Benzo(g,h,i)perylene	R2136493	J
	WG588886	SAMP	Chrysene	R2136493	J
	WG588886	SAMP	Fluoranthene	R2136493	J J
	WG588886 WG588886	SAMP SAMP	Fluorene Pyrene	R2136493 R2136493	J
	WG588816	SAMP	ORP	R2135533	T8
L570913-04	WG588672	SAMP	Selenium	B R2134814	ō
	WG588660	SAMP	Mercury	R2136697	J
	WG588833	SAMP	Total Xylenes	R2135193	J
	WG588886	SAMP	Benzo(a) pyrene	R2136493	j
	WG588886	SAMP	Benzo (b) fluoranthene	R2136493	J
	WG588886	SAMP	Benzo(g,h,i)perylene	R2136493	J J
	WG588886 WG588886	SAMP SAMP	Fluoranthene Pyrene	R2136493 R2136493	J
	WG588816	SAMP	ORP	R2135533	T8
L570913-05	WG588672	SAMP	Selenium	R2134814	Õ
	WG588660	SAMP	Mercury	R2136697	J
	WG588687	SAMP	Toluene	R2135133	J
	WG588886	SAMP	Benzo(a) anthracene	R2136493	Ĵ
	WG588886	SAMP	Benzo (a) pyrene	R2136493	J
	WG588886	SAMP	Benzo(b) fluoranthene	R2136493	J_
	WG588886	SAMP SAMP	Benzo(g,h,i)perylene Fluoranthene	R2136493 R2136493	J J
	WG588886 WG588886	SAMP	Pyrene	R2136493	J
	WG588816	SAMP	ORP	R2135533	T8
570913-06	WG588672	SAMP	Selenium	R2134814	ō
	WG588660	SAMP	Mercury	R2136697	Ĵ 🧧
	WG588687	SAMP	Toluene	R2135133	J
	WG588886	SAMP	Anthracene	R2136493	J
	WG588886	SAMP	Acenaphthene	R2136493	J
	WG588886	SAMP	Acenaphthylene	R2136493	J
	WG588886	SAMP	Benzo(a) pyrene	R2136493	J
	WG588886 WG588886	SAMP SAMP	Benzo(b) fluoranthene Benzo(g,h,i) perylene	R2136493 R2136493	J J
	WG588886	SAMP	Chrysene	R2136493	J
	WG588886	SAMP	Fluoranthene	R2136493	Ĵ
	WG588886	SAMP	Pyrene	R2136493	J

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier	
	WG588886	SAMP	Nitrobenzene-d5	R2136493	J1	
	WG588816	SAMP	ORP	R2135533	T8	

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits
0	(ESC) Sample diluted due to matrix interferences that impaired the ability to make an accurate analytical determination. The detection limit is elevated in order to reflect the necessary dilution.
Pl	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
Т8	(ESC) - Additional method/sample information: Sample(s) received past/too close to holding time expiration.
V	(ESC) - Additional QC Info: The sample concentration is too high to evaluate accurate spike recoveries.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples.

 Relates to how close together the results are and is represented by

 Relative Percent Difference.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Summary of Remarks For Samples Printed 04/24/12 at 17:01:26

TSR Signing Reports: 134 R4 - Rush: Three Day

Sample: L570913-01 Account: OXYGJCO Received: 04/19/12 09:00 Due Date: 04/24/12 00:00 RPT Date: 04/24/12 17:00 Changed to rush - MB 4/20/12 L570913-02 Account: OXYGJCO Received: 04/19/12 09:00 Due Date: 04/24/12 00:00 RPT Date: 04/24/12 17:00 Sample: L570913-04 Account: OXYGJCO Received: 04/19/12 09:00 Due Date: 04/24/12 00:00 RPT Date: 04/24/12 17:00 Sample: L570913-05 Account: OXYGJCO Received: 04/19/12 09:00 Due Date: 04/24/12 00:00 RPT Date: 04/24/12 17:00 Sample: L570913-05 Account: OXYGJCO Received: 04/19/12 09:00 Due Date: 04/24/12 00:00 RPT Date: 04/24/12 17:00

Sample: L570913-06 Account: OXYGJCO Received: 04/19/12 09:00 Due Date: 04/24/12 00:00 RPT Date: 04/24/12 17:00

OXY USA WTP	IP -	Alt	emate billing	information:	l			Ana	lvsis/(Conta	iner/P	reservat	ive		Chain of Custody Page of
Grand Junction,		0	O Table 9	910	,							F. 18		Prepared by:	. — —
•		14			5						H			ENVIR	ONMENTAL
760 Horizon Dr.,		I									and Watta	44			CE CORP.
Grand Junction,	CO 81	506 km	var	niel Padilla	/ Blair Ro	llins			1.76		10 Th				banon Road
<u> </u>		Ema	ail to: <i>Bla</i> dani	ir_ اکج (۱۱) el_padilla@	(56√ 0χγ, α ⊉oxy.cbm	:5/1/ , blai						Med		Mt. Juliet,	TN 37122
Project Description: 697-08-53		•	City/Sate Collected	Parachut	e							erálity		•	15) 758-5858
Phone: (970) 263-3601 FAX:	Client Project		ESC Key		CO-TABLE	E910								FAX (6	300) 767-5859 315) 758-5859 239
Collected by: C5B	Site/Facility ID	#617-08-S	P.O.#:	<u> </u>				ջ		i, Zn					archine recentation proposed
Collected by (signature):	Rush? (La	b MUST Be I	Notified)	Date Resu	Its Needed:		GRO	PA	표	Cu, Ni,				CoCode OXYGJ	CO (lab use only)
Packed on Ice N	Ne	ame Day ext Day wo Day	100%	Email?		No.	V8260BTEX,	SV8270PAHSIM	SPCON,	+	CR6SS			Template/Prelogin	T74772
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntre	/826	DRO,	SAR,	MRCRA8	CR3,			Shipped Via: Remarks/Contaminant	Sample # (lab only
697-08-53-18-€	Grab	55	1001	4/18/12	1001	3	x	×	*	×	入	A VI	2		670913-x
697-08-53-PB-W	Gras	55	15-18	4/18/12	1024	3	×	×	×	×	×	ile.	0		a
697-08-53-PB-NE	Grab	55	200	مداء	0934	3	×	X	×	X	×				33
697-08-53-PB-SW	Grab	55	15.2	4/18112	1016	3	×	×	×	×	×	AGE AGE			61
697-08-53-PB-center	Grab	55	13-19	4112112	104/	3	×	X	×	×	×	71 (4)	17 17 1-9		and or
697-08-53-PR-Comp	Somb .	55	6-12	4/18/12	1102	3	<u>x</u>	×	×	~	×	7071 174			1.
· · · · · · · · · · · · · · · · · · ·							168		91.44			140	9		
									7		#106 0, 415 0025	25-16 25-16			
			<u> </u>			<u>.l.</u>			1187		1,202	347		<u> </u>	Congress of
*Matrix: \$\$ - Soil/Solid GW - Grou Remarks:	indwater WW .	- WasteWater	DW - Drin	king Water (OT - Other_	ς	<u> </u>		ΟÝ	· •	Ç	1/.2	pH _ S low_	· · · · · · · · · · · · · · · · · · ·	mp her
Relinquisted by: (Signature)	Date:	I		ved by: (Signa	ature)	J	<u>09</u>	0	San	noles	returner	d via: 🖂 (Condition:	(lab use only)
Relinquished by: (Signature)	Date:			ved by: (Signa	aturië)			,	1	ap:	ortender of	Bottles	Received		×
Relinquished by: (Signature)	Date:	Time:	Rece	ived for lab.b	y: (Signatu	re)	Pites	y sign	Da	te:	9-12	Time:		pH Checked:	NCF: