COLORADO

CO

Reclamation Workshop

Denise T. Arthur Ph.D. Colorado Oil and Gas Conservation Commission

COLORADO Department of Natural Resources

Introduction Purpose Goals for - Final Reclamation

Overview

Introduction

- Group overview
- Reclamation Staff

Rules

- Explanations
- Helpful Hints

•BS in Wildlife Biology from Colorado State University

•Prior to the COGCC, was a Private lands Wildlife Biologist, a joint position with NRCS, CPW and Bird Conservancy of the Rockies

•Experience include rangeland management, federal farm bill programs, stream and riparian restoration and wildlife habitat conservation

•BS in Wildlife Management and Conservation from Humboldt State University

•Master's degree in Natural Resources Stewardship in Ecological Restoration from Colorado State University

 Prior to the COGCC, was a Wildlife Biologist for oil and gas companies, monitoring environmental compliance of energy development with sensitive and threatened plant and animal species

•BS in Rangeland Ecology from Colorado State University

 Prior to working with COGCC, I worked for a Reclamation company working in oil and gas performing and monitoring stormwater and reclamation projects throughout CO and WY.

•Additionally, I worked as an environmental technician for the mining and agricultural industries.

Why is Reclamation important?

Wildlife

Agriculture

Oil and Gas Location - If No Reclamation

Oil and Gas Location without Reclamation

EAST CENTER LOOKING NORTH

Large locations with NO interim reclamation

Oil and Gas Location without Reclamation

Pad Construction BMPs

Problems

No BMPs at all- BMPS need to be installed to the dirt work starting

Improperly installed or not completely installed

Driving over berms

ORADO

No Construction BMPs

Topsoil - Construction and stabilization

<u>Rules associated with topsoil-</u>1001a.;1002 b.; 1002c;1003 b.; 1003 d.;

Planning

Long term storage

Preferred seed mix

Topsoil

Why is topsoil Salvage and Replacement Important?

- 1. Increased plant growth
- 2. Microbial populations
- 3. Native seed sources
- 4. Plant Nutrients E.g.. Organic matter, Nitrogen

Topsoil Horizon

Soil Horizons

Master		Suffix	
*	O Horizon	*	t, k
**	A Horizon	*	z, y, z
**	B Horizon	***	SS
*	C Horizon	***	i, e, a
**	R Horizon	*	m, d, r

What is the Texture

Identify Topsoil and Other Soil Horizons

Salvage the Topsoil

Salvaging topsoil when wet or frozen can severely degrade the topsoil soil structure.

Topsoil Salvage Methods

Topsoil Stockpile BMPs

Keep the stockpiles separate!! Note: Rule1002 b.; 1002 c.

Do not mix this layer

- 3:1 slope for best for seeding -
- Preserve microbial population pile not higher than 5 feet to center of pile
- Erosion control around pile
- Plant a perennial vegetation to stabilize until use
- Use appropriate seed mixture
- Sign the Stockpile!!

Signage

Topsoil Native Seed SourcePipeline example 3 mileslong section

- 31 different volunteer forb (flower) species present (volunteer species were not in the seed mixture)
- Of the 11,179 woody plants counted 4,844 were volunteer individuals from the topsoil replacement

Rules and Actions Required

Remove all equipment and materials (1004.a)

Pipeline risers (requires flow and gathering lines)

Electrical/power equipment (poles, transformers etc)

Roads, culverts, gravel, concrete pads

Do not bury or burn materials on site without CDPHE/county and land owners written approval.

Equipment left behind

Rules and Actions Required

<u>1003 & 1004</u> De-compaction - very important for revegetation to occur - Why is decompaction so important

18 inches depth (by rule)

Cross rip (also to 18 inches)- What does this mean and why is it important

photo 9: Shovel could not break through soil surface indicating soil compaction.

Compaction Concepts

Compaction Concepts Tire Approx. Depth 0" Topsoil Compaction due to contact pressure 12" Upper subsoil Contact pressure + axle pressure 20" Lower subsoil Axle load

Figure 4. How tractor loads affect soil compaction. The lines in the soil under the tire represent curves of equal pressure. In this diagram pressure per unit area is a constant 12 psi. The size and total weight increase with tractor size as does depth and width of transmitted pressure. (Source—Soehne, Jour. of Agr. Eng., May 1958.)

Compaction Concepts

Soil Structure change Reduces air infiltration in the soil - which can kill microbial populations Reduces water infiltration

Soil components affected by compaction

Compaction and Plant Growth

COLORADO http://www.ipm.iastate.edu/ipm/icm/2005/5-9-2005/soilmoist.html

Soil Compaction

Top 10 Reasons to Avoid Soil Compaction

- 1. Causes nutrient deficiencies
- 2. Reduces crop productivity
- 3. Restricts root development
- 4. Reduces soil aeration
- 5. Decreases soil available water
- 6. Reduces infiltration rate
- 7. Increases bulk density
- 8. Increases sediment and nutrient losses
- 9. Increases surface runoff
- 10. Damages soil structure

What to do about soil compaction

What is Cross Ripping?

Rules and Actions Required

Surface Owners Consultation - 306.f. <u>Final Reclamation</u> Consultation

Identify intended land use

Timing of activities

Preferred seed mix

Helpful hint - start final consultation as soon as decision is made to plug well or abandon oil and gas facility

Seed Mixture Important Concepts

Native Perennial Grass mi	Common Name - Variety ^a	% of Mixture	Seeds per Pound	(PLS lbs/ac)	Seed/ft2*
	, ,			,	
Grasses					
Bouteloua curtipendula	Sideoats Grama - Vaughn	15	191,000	2.57	11.25
Bouteloua gracilis	Blue Grama - Native, Alma	15	825,000	0.59	11.25
Buchloe dactyloides	Buffalo Grass	10	56,000	5.83	7.5
Elymus Trachycaulus	Slender Wheatgrass	15	159,000	3.08	11.25
Elymus Lnaceolata ssp. La	15	154,000	3.18	11.25	
Pseudorroegneria spicata ssp spicata (Agropyron					
spicatum)	Bluebunch Wheatgrass - Anatone	15	140,000	3.50	11.25
Pascopyron smithii					
(Agropyron smithii)	Western Wheatgrass - Arriba	15	110,000	4.46	11.25
	Total	100		23.21	75
Based on 75 per squa	are foot for broadcast seeding				

Plant Choices

How to find a seed mixture per the rules

Local Soil Conservation Service

Considerations

- Soil type
- Land use
- Surrounding Vegetation and Habitat type

Idea is plant a seed mixture that will be a longterm self sustaining plant community Caution

- Monocultures of intermediate Wheatgrass
- Annuals like yellow sweet clover
- Short term perennials Alfalfa

Not drought resistant

Will be susceptible to erosion

Seeding Steps and Techniques

Seedbed preparation

Fertilize the Soil if Required

Note: Slow release fertilizer

Might want to take a soil sample

Test for Agronomic Soil Properties

Revegetation Techniques Seeding

Drill seeding
Broadcast seeding
Goat restoration hoof action

Keys to success

- 1. Seed depth
- 2. Seed soil contact

Single Broadcast Seed Box

Multiple Box Seed Drill

Seed Soil Contact!!!

MULCH and Products that Function in a Similar Way

Why is important to utilize a mulch type product?

- Retain moisture
- Adds carbon to the soil system increase microbial activity
- Stabilizes to seeds in the soil
- Decreases erosion, wind and water

Beware of Nurse Crops

Beware of Nurse Crops

Nurse Crop gone wild

COLORADO

photo 4: The sterile annual cover crop (Triticale) is the dominant vegetation at the location.

Mulch Application

Crimping Unit

Mulch Applied Properly

Beware of manure

Manure not uniform: bare areas, then too thick in other areas

Manure 8 inches thick

Onsite Transect #2 Northwest

Disturbed site with manure application all weeds

Reference Area

"Mulch Alternative" Jute Mat

Jute matt on a 1.5 :1 slope very successful

Flexible Growth Medium™ (HP-FGM™):

Highly recommend hydroseeding or otherwise separate from the hydromulching

Unique Revegetation Technique Goat Restoration

Before

After

Vegetation Monitoring - Final Reclamation and Bond release

Vegetation Monitoring - Point-intercept method How we verify if the vegetation is 80% of a reference area.

Data sheet for Vegetation Transects

	Location/Opera	tor:	05-067-060	83	Red Mesa Hol	dincs		
Transect #/disturbed/Ref	Transect 1 - DisturBED				Transect \$1- ReGivenio			Τ
Transect Orientation and first photo, degrees	41 deg-ees NE 37.07286, -10813	549			66 deg eeg. NE 37. 07312 - 108. 13476			
Photo Midpoint (2)	37.07307, -108.13	544			37.07313,-108.1	3463		
End transect	37. 07312,-108.	13561			37.07312,-108.13445			
Photo other								
Aspect/Slope	1 to 2 percent NW				1 to 2 percent NW			
		Totals		Totals		Totals		Totals
Cryptogams (eg. Moss, lichen)					:	2		
Litter	00000	::6	D		DDD:	32		
Bare Soil		10			DD:	22		
Rock		(10)						
Total Weeds		25				1		
Total Desirable Species		8				19		
80% Check	\$/19=10	NO						
	1st Hit	2nd/P	1st Hit	2nd/P	1st Hit	2nd/P	1st Hit	2nd/P
Kochia scoparia (seedlings)		24			1			
Cardous notans	•	0						
Achnatherun hymenoides	-				:	2		
Bromus inermis					•	0_		
Artemisia tridentata					D ::	(4)		
Bromus tectorum	_				•	\bigcirc		
Chrysothamnus nouseosus						3		
								-
								-
								+

PA- Well Location- Failed Cropland Assessment

Reference Area - adjacent cropland plant count

Plant Density Quadrate

Disturbed Area - Plant Count, may be similar

PA- Well Location- Failed Cropland Assessment

Reference Area - adjacent cropland Height well over 3 feet

Disturbed Area - Plant height 30 inches

Weed Control

Interim Reclaimed location

Kochia Infestation inhibits desirable plat species establishment and growth! Also becomes debris and infests adjacent lands

Note: Hard hat set on a yard stick.

PA- Inspection Failed for noxious weeds, evidence of seeding but did not remove gravel before seeding so seeding not successful

PA-Inspection failed, Canada thistle (Cirsium arvense) inundating location

Goat Grass Story- Infested mulch-Operator, COGCC, County Weed Inspector, Cooperation

Integrated Weed management

Control Methods may include: herbicide applications, hand work, Mowing, bio-control, goats

Project Examples Operator and Orphan Wells

2013 Inspection triggered required reclamation

Onsite Transect #1 West

Orphan Well Western Slope Example - Arroyo

Orphan Well Example - Arroyo

Location from SE corner. Top soil in process.

Location from NE corner. Top soil in process.

Drainage area on north side of location with depression for sediment retention.

First growing season Fall 2015

Second Growing Season June 2016

Orphan Well Example - Halcyon

Facing North

Halcyon Reference

Offsite Transect Northeast

photo 2: Fertilizer application and harrowing to incorporate into the soil.

photo 7: Hand application of wood mulch.

Orphan Well Example - Halcyon

photo 1: South side of the location facing north toward the location.

Rules and Actions Required

<u>Re-vegetation</u>- passing final reclamation requires 80% vegetation cover compared to a reference area

HELPFUL HINTS

- Replace topsoil on the entire location In other words save topsoil for final reclamation
- Plant selection natives are typically more drought tolerant
- Add soil Amendments -based on agronomic soil sample analysis
- Seed following a good plan seed/depth, seeding rate,
- Vegetation establishment to meet the rules may take a minimum of 2 years or more

Re-vegetation - Helpful Hints continued

- Monitor vegetation and reseed if germination does not occur
- Protect seed and stabilize the site- with mulch, crimp straw, use mats and nets on slopes
- Manage all weeds (rules specific to noxious but no weeds are counted in vegetative assessment)
- Croplands we will need to see two years of production (after two years final) turning over to farmer is not reclamation
- Maintain stormwater BMPs until re-vegetation/re-contouring and re-grading activities have stabilized the site (pad, road)

Final Reclamation Oil and Gas Location

Final Reclamation Goal Cannot tell the difference between the disturbed area and the adjacent rangeland or cropland

Provides
Habitat
Long-term erosion control
Site stabilization through long-term self sustaining native vegetation

Questions

Restoration Benefits